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In classical covering space theory we have an isomorphism of the fundamental
group with the fibre of the universal cover over the basepoint. Covering spaces
of topological groups are group extensions, but not every group extension is a
covering space. Perfect groups admit a universal central extension and the
kernel of this extension is also called fundamental group. For simply connected
Chevalley-groups over a perfect field, this fundamental group, classically called
second unstable K-Theory, is exactly the fundamental group of a simplicial
resolution. The loops are described explicitly by matrices.

1 Covering Spaces

Example 1.1. The universal covering space of the circle S1 is R, with covering map

R

S1

x

e2πix

3

3

∗This is an extended abstract, without proofs, of the author’s german diploma thesis, supervised by
Matthias Wendt at Albert-Ludwigs-Universität Freiburg, to whom the author is deeply indebted.
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This is a continuous group homomorphism of topological groups, where we think of S1

as unit complex numbers and of R as an additive group. The kernel of this map is Z, a
discrete abelian group. If we take the neutral element 1 ∈ S1 as basepoint, the fibre over
the basepoint π−1(1) is exactly the kernel of the group homomorphism π.
The fundamental group π1(S1, 1) is related to π−1(1): We can lift a loop in S1 to a

path in R which starts at 0 and ends at some point in the fibre. To reverse this process,
we can choose an arbitrary path connecting 0 and a point in the fibre, since R is simply
connected, like every universal cover. Homotopy lifting theory shows that this gives an
isomorphism

π1(S1, 1) −→∼ Ker(π).

We can also describe the map π as a central group extension

Z ↪→ R � S1

which is nothing but a short exact sequence of groups, such that the kernel is mapped into
the centre of the middle-term group.

What we have seen here can be vastly generalized:

Theorem 1.2. For a path-connected topological group G, there exists a universal cover
E, unique up to unique isomorphism. Every universal cover admits a unique topological
group structure, such that the covering map is a group homomorphism. Choosing identity
elements as base-points, the fibre over the basepoint is the kernel and is canonically
isomorphic to the fundamental group of G. π1(G, 1) is a discrete, central subgroup of E.

The isomorphism can bee seen as part of the fibre sequence

· · · → Ω Ker(π)→ ΩE → ΩG→ Ker(π)→ E � G

which yields a long exact sequence under π0

0 = π1(E)→ π1(G)→ Ker(π) = π0(Ker(π))→ π0(E) = 0.

Example 1.3. The universal covering space of the Lie group SL2(R), commonly just
denoted S̃L2(R), carries a unique group structure such that the covering map π : S̃L2(R) �
SL2(R) becomes a group homomorphism. The fundamental group of SL2(R) is again Z
and we get a group extension

Z ↪→ S̃L2(R) � SL2(R).

The universal cover admits no non-trivial covering spaces by definition, so it is natural to
ask whether it admits non-trivial group extensions.

This question has been asked at MathOverflow recently [Hn11].

Example 1.4. The Lie group SL2(C) is simply connected, so it is its own universal cover.
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Example 1.5. We can look at SL2 as an affine algebraic group. In this setting, the
étale fundamental group plays the role previously played by the fundamental group in
the euclidean topology. We have πét1 (SL2) = 0, so the group is already simply connected.
This corresponds to the fact that there are no non-trivial étale isogenies, which is the
corresponding notion for covering spaces. In contrast, the affine algebaic group PSL2 is
covered by SL2, thus has non-trivial étale fundamental group.

Remark 1.6. When studying central group extensions of a topological or algebraic group,
one can first study all covering spaces up to the universal cover, which is done by the
classical or the étale funamental group. Then one can study all central extensions of the
universal cover which together yields all central extensions of the original group. Since
classical fundamental groups and étale fundamental groups are well understood to some
extent, we will now look at simply connected groups.

2 Central Group Extensions

Definition 2.1. A group G is called perfect, if it is equal to its own derived group
D(G) = [G,G].

Being perfect is somehow the opposite of being abelian.

Definition 2.2. A central extension E � G is universal, if every other central extension
admits a unique extension homomorphism from E.

Theorem 2.3. If a group G admits a universal central extension E � G, then both G
and E have to be perfect.

This can be easily seen by building extensions by G/D(G) or E/D(E) which admit
more than one homomorphism from E.
Remark 2.4. For a group extension

A ↪→ E � G

there is a canonical G-operation on A, by conjugation in E, using a set-theoretic section
of E � G. This operation is trivial if and only if A sits in the centre of E.

Theorem 2.5. Group extensions of G with A with prescribed G-Operation on A are clas-
sified by second group cohomology H2(G,A). The first integral group homology H1(G,Z) is
isomorphic to G/D(G), so if G is perfect, H1(G,Z) vanishes and the universal coefficient
theorem

Ext(H1(G,Z), A) ↪→ H2(G,A) � Hom(H2(G,Z), A)

yields an isomorphism. The kernel of the universal central extension is H2(G,Z).

Theorem 2.6 (Hopf, ’42). If a group G is perfect, there exists a universal central extension
E � G. Presenting G = F/R with a free group F and relations R, it is given by the
formula

E := [F, F ]/[F,R]
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with the map to G being reduction modulo R. The kernel of this map is then

H2(G,Z) = (R ∩ [F, F ])/[F,R].

3 Chevalley groups

Definition 3.1. A smooth connected linear algebraic group G over a field k is called
Chevalley-group if G is semi-simple, almost simple and split over k. The group G is called
simply connected if πét1 (G) = 0.

A good example of a simply connected Chevalley-group is SLn for some n.

Definition 3.2. G simple means simple Lie algebra and G almost simple means, there is at most
a finite center Z ⊂ G and the quotient by the center is simple. G semi-simple means semi-simple
Liea algebra. G split means any maximal torus is k-isomorphic to a product of copies of Gm.

Proposition 3.3. The k-rational points of semi-simple linear algebraic groups over a
field are perfect, i.e. they equal their own derived subgroup:

[G(k),G(k)] = G(k).

While the derived group as an algebraic subgroup is perfect, the R-rational points of G
are not perfect for every ring R.

Proposition 3.4. For every (irreducible, reduced) root system Φ, there exists a simply
connected Chevalley-group, unique up to unique isomorphism, which we will denote by
G(Φ).

Theorem 3.5 (Steinberg, ’62). Let G be a simply connected Chevalley-group over k
infinite with a chosen maximal torus. Then for all roots α ∈ Φ, there are morphisms
xα : Ga → G such that G(k) is presented by generators

{xα(u) | α ∈ Φ, u ∈ k},(
for u ∈ k× : wα(u) := xα(u)x−α(−u−1)xα(u), hα(u) := wα(u)wα(1)−1

)
and relations

∀u, v ∈ k : xα(u)xα(v) = xα(u+ v)(R1)

∀β ∈ Φ : α+ β 6= 0 ∀u, v ∈ k : [xα(u), xβ(v)] =
∏
i,j∈N

xiα+jβ(Nα,β:i,ju
ivj)(R2 i)

∀u ∈ k× ∀v ∈ k : wα(u)xα(v)wα(u)−1 = x−α(−u−2v)(R2 ii)
∀u, v ∈ k× : hα(u)hα(v) = hα(uv)(R3)

where the “structure constants” Nα,β:i,j ∈ Q can be determined, but this is not important
for now. The elements wα(u) represent elements of the Weyl group of G and the elements
hα(u) are points of the chosen torus.
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Example 3.6. With the notation from Steinberg’s presentation, we have in SL2(k) with
the diagonal matrices as maximal torus and α := (1, 2):

xα(t) =

(
1 t
0 1

)
, x−α(t) =

(
1 0
t 1

)
,

wα(t) =

(
0 t
t−1 0

)
, hα(t) =

(
t 0
0 t−1

)
,

Remark 3.7. Steinberg’s presentation, together with Hopf’s formula suggest a presentation
for the universal central extension of a simply connected Chevalley-group, which was also
given by Steinberg: Just take the Steinberg-presentation of G and leave out the relation
(R3) for commuting torus elements. The resulting group, as proved by Steinberg, is indeed
the universal central extension and we call this the Steinberg-group of G, or simply of the
root system Φ and the field k. Observe that the Steinberg group is a functor on rings
by putting ring elements in the generators xα. Also note that the elements xα(u) don’t
generate G(R) for any ring R, instead they form a subgroup.

Definition 3.8. Denote the Steinberg-group of G(Φ) by St(Φ) and its generators by x̃α
to distinguish them from the generators xα of G. We will write Stn := St(An−1) for the
Steinberg-group corresponding to G(An−1) = SLn. The subgroup of G(Φ, R) generated
by the xα(u) with u ∈ R is called elementary subgroup E(Φ, R).

4 K-Theory

Definition 4.1. Algebraic K-Theory of a ring R is defined by taking the Grothendieck-
group of projective modules over R. First algebraic K-Theory is defined by taking the
Whitehead-group GL(R)/E(R), where E(R) denotes the group generated by elementary
matrices. Second algebraic K-Theory is defined by taking the kernel of the extension
St∞(R)→ SL∞(R), where the map is the projective limit over all Stn(R) � SLn(R).

Definition 4.2. Unstable first and second K-Theory of a ring R and a root system Φ
are defined as

K1(Φ, R) := G(Φ, R)/E(Φ, R), K2(Φ, R) := Ker (St(Φ, R) � G(Φ, R)) .

Remark 4.3. For an infinite field k, Steinberg’s presentation says that G(Φ, k) is generated
by E(Φ, k), so K1(Φ, k) = 0.

Theorem 4.4 (Matsumoto, ’69). The second unstable K-Theory of an infinite field can
be presented by symbols [[a, b]] with a, b ∈ k× under the relations

[[a, bc]] + [[b, c]] = [[ab, c]] + [[a, b]], (weak bilinearity)(1)

[[1, 1]] = 0, [[a, b]] = [[a−1, b−1]] (weak normalization)(2)
[[a, b]] = [[a, (1− a)b]] for a 6= 1 (Steinberg-relation)(3)
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and for non-symplectic root systems (Φ 6= Cn for all n), the additional relation

[[ab, cd]] = [[a, c]] + [[a, d]] + [[b, c]] + [[b, d]]. (strong bilinearity)

Definition 4.5. The group resulting from the relations for non-symplectic root systems is
now called KM

2 (k), the second Milnor-K-Theory of a field. We might call the group resulting
for symplectic root systems symplectic K-Theory and just note that it is isomorphic to
the so-called Milnor-Witt-K-Theory of Morel.

Example 4.6. For a finite field k, Milnor K-Theory KM
2 (k) vanishes.

5 Homotopy Theory

We will now take a simply connected Chevalley-group, put it in some abstract machine
to produce a simplicial group (which you may think of as a combinatorial model of
a topological group), do the same for the corresponding Steinberg-group and get a
covering of simplicial groups. In this setting, under a reasonable assumption on K-Theory
regularity, lifting arguments from the classical covering space theory can be copied to
get an isomorphism between the fibre over the basepoint (which is the unstable second
K-Theory) and the simplicial fundamental group, represented explicitly by matrices whose
entries are polynomials.

Definition 5.1. One can define a simplicial ring Z[∆•] with graded pieces Z[∆n] =
Z[t1, . . . , tn] and “reasonable” boundary and face maps

di : Z[t0, . . . , tn]
/ n∑

j=0

tj − 1

→ Z[t0, . . . , tn−1]/

n−1∑
j=0

tj − 1

 , tj 7→


tj j < i

0 j = i

tj−1 j > i

sj : Z[t0, . . . , tn]
/( n∑

i=0

ti − 1

)
→ Z[t0, . . . , tn+1]/

(
n+1∑
i=0

ti − 1

)
, ti 7→


ti i < j

ti + ti+1 i = j

ti+1 i > j

For a field k, this yields a simplicial k-algebra k[∆•] := Z[∆•]⊗ k. For any functor F on
k-algebras, with values in some category C, we can take values in this simplicial k-algebra
and get a simplicial object F(k[∆•]) in C. Now we define the singular resolution of F

SingA
1

• F :=

(
A 7→ F(k[∆•]⊗

k
A)

)
.

To talk about simplicial fundamental groups and homotopy theory, one does not only
need simplicial objects, but also a model category structure. We take the usual Kan
model structure, which is essentially the model structure which yields the Serre model
structure on CW-complexes after geometric realization. If you don’t know anything about
model structures, take the next theorem as a definition and everything will be fine.
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Theorem 5.2. Simplicial groups are fibrant in the Kan model category, so we can calculate
the fundamental group of a simplicial group G• by loops modulo based homotopies

π1(G•, id) =
{α ∈ G1 | d0α = d1α = id}

{d0σ ∼ d1σ | σ ∈ G2 : d2σ = s0 id}
.

Corollary 5.3. For a simply connected Chevalley-group G, we can calculate the funda-
mental group of its singular resolution

π1(SingA
1

• (G)(k), Id) =
{M ∈ G(k[t]) | M(0) = M(1) = Id}

{N(1− t, t) ∼ N(0, t) | N ∈ G(k[t, s]) : N(t, 0) = Id}
.

Theorem 5.4 (Jardine, ’83). The fundamental group of the singular resolution of a simply
connected Chevalley-group G is isomorphic to an unstable second Karoubi-Villamayor-K-
group.

These K-groups are isomorphic to the unstable K-groups defined above (at least for
fields) and Jardine’s proof proceeds by concatenating isomorphisms where little is known
about the actual structure of the resulting isomorphism map.

Theorem 5.5. If second unstable K-Theory has regularity in low degrees, i.e.

K2(Φ, k[t1, t2]) ' K2(Φ, k[t1]) ' K2(Φ, k),

then the fundamental group of the singular resolution of a simply connected Chevalley-group
G is isomorphic to an unstable second K-group by explicitly mapping Steinberg-symbols
{a, b} in K-Theory to loops Cαt (a, b) ∈ G(k[t]) which are defined by

Xα
t (u) := xα(tu),

Wα
t (u) := Xα(u)X−α(−u−1)Xα(u),

Hα
t (u) := Wα

t (u)Wα
t (1)−1,

Cαt (a, b) := Hα
t (a)Hα

t (b)Hα
t (ab)−1.

To prove that this map KM
2 (k)→ π1(SingA

1

• G(k)) is an isomorphism, one needs two
important ingredients:

1. A factorization lemma for Chevalley-groups over polynomial rings, which allows to
decompose every element into a product of elementary matrices - essentially due to
Suslin and Vorst for SLn, extended to general Chevalley-groups by Abe and Wendt.

2. A homotopy lifting lemma for the singular resolution of the Steinberg-group, which
depends on regularity for second unstable K-Theory. This, sadly, is not very well
available in the literature yet, so it stays somewhat conjectural.

The rest is done by proving an analogue of Chevalley’s commutator formula in the
simplicial group, which then allows to copy large parts of Matsumoto’s proof and classical
covering space theory. ♦
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Example 5.6. If we take α = (1, 2) in Φ = A1, then G(Φ) = SL2 and

Xα
t (u) = xα(tu) =

(
1 tu
0 1

)
, X−αt (u) = x−α(tu) =

(
1 0
tu 1

)
paths from Id to xα(u) resp. x−α(u). Now Wα

t (u) 6= wα(tu), instead

Wα
t (u) =

(
1 tu
0 1

)(
1 0

−tu−1 1

)(
1 tu
0 1

)
=

(
1− t2 (2− t2)tu
−tu−1 1− t2

)
so we have a path from Id to wα(u). Similarly,

Hα
t (u) =

(
1 0
0 1

)
+

(1− u)t

u

(
(t2 − 2)tu −(t2 − 2)(t2 − 1)u
t2 − 1 −(t2 − 2)t

)
Example 5.7. Finally...

Cαt (x, y) =

(
1 0
0 1

)
+ t(t2 − 1)(t2 − 2)

(1− x)(1− y)

x2y

(
xt(t2 − 1)(1− x) −yx2

(
(t2 − 1)2(1− x) + x

)
(t2−1)2(1−x)−1

t2−2 −xyt(t2 − 1)(1− x)

)
,

6 A1-Homotopy Theory

This section is only of interest, if you know what Morel&Voevodsky’s A1-Homotopy
Theory of Schemes is about.

Theorem 6.1 (Wendt, ’10). Singular resolutions of Chevalley groups have the affine
Brown-Gersten-property for the Nisnevich topology, which allows to compute their funda-
mental group presheaf over affine schemes just by taking the fundamental group of the
sections, so

πA
1

1 (G)(k) = π1((SingA
1

• G)(k)).

This tells us, that the fundamental group computed above is the A1-fundamental group
of G over k. For G of rank ≥ 3, this is another proof of a theorem already known:

Theorem 6.2 (Wendt, ’10). The A1-fundamental group of a simply connected Chevalley-
group of rank ≥ 3 over an infinite field k is isomorphic to KMW

2 (k) for symplectic groups
and KM

2 (k) otherwise.

Remember (from above) that KMW
2 (k) is isomorphic to the symplectic K-Theory which

arises as presentation for symplectic root systems in Matsumoto’s theorem. We note
that the isomorphism from KMW

2 (k) to the symplectic K-Theory requires the Milnor
conjecture (i.e. Voevodsky’s norm residue isomorphism theorem) as far as we know.
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